We use cookies to personalize content, to provide social media features and to analyze our traffic. We also share information about your use of our site with our social media, advertising and analytics partners. For information on how to change your cookie settings, please see our Privacy policy. Otherwise, if you agree to our use of cookies, please continue to use our website.

PPC Averages can Hide Incremental Nightmares

In case you missed it, this was posted on SEL yesterday: How much can you afford to spend on marketing? This simple little question hides some vexing issues that are worth exploring during rocky economic times. Suppose you budget $200 to buy a DVD Player. When you arrive at the store you find the model you want is actually on sale for $100! You arrive home, your 5 year-old hears the good news, grabs the left over $100 and feeds it into the paper shredder. You are: a) indifferent because you planned to spend $200 anyway; or b) irate because your son just wasted $100? Is this happening in your PPC program? Let’s take a hypothetical retailer with 50% gross margin on all products and 10% variable costs tied to credit cards, pick and pack, cardboard, commissions, etc. They’re willing to spend the rest (40% of Sales) on marketing to capture as many orders as possible at break even and then make money on lifetime value. Their targets and goals aren’t really the point; the point here isn’t about setting targets, it’s finding out what goes into hitting the target. Let’s say their PPC Search program (excluding their brand terms) spends $160K per month and generates $434K in sales for a 37% Cost to Sales ratio. On the surface, it appears that this program hits on all cylinders and achieves the desired metrics. However, it’s important to look at both the averages and the incremental efficiencies to really determine if the program is doing what makes the most sense for the company writ large. WARNING: THE FOLLOWING CONTAINS GRAPHS… The mechanics are different, but the math is very similar to catalog circulation. If we look at the paid search spend in incremental chunks, like mailing segments, you’d obviously buy the most efficient advertising first. The law of diminishing marginal returns would then show that each successive advertising chunk would be somewhat less efficient than the last. So, for our hypothetical retailer, the curve might look like this: Incremental View of Sales and Margin Graphically, plotting the $10K chunks of ad costs on the horizontal and the resulting sales and Net Margin on the vertical you see a classical representation of diminishing returns. Let’s look at these same numbers a few different ways: first, let’s see what happens when we plot just the “incremental sales” rather than the total sales. In other words, for each $10K increment in spend, how much did we generate in sales? Diminishing incremental ROI The first $10K generated $100K in sales, but that last $10K in spend (bringing the total from $150K to $160K only generated $3K in incremental sales). Plotting this as a function of efficiency and measuring the Cost to Sales (A/S) ratio for each increment yields: Average versus incremental efficiency Here, we can see that while the average efficiency increases from 10% to 37% as the spend increases, all of the spend after $80K has come at worse than 50% A/S with the last $40K coming at more than 100% cost to sales ratio. That last slug is tantamount to buying your own merchandise with marketing budget to push the top line! Perhaps the best way to look at this is as a function of Marketing Income (Net Margin – Ad Cost). Aggregate versus Incremental Marketing Income The top line shows total Marketing Income, which is maximized when the Advertising Spend is $60K. If PPC Advertising is to be a cash generator, this is the point where it makes sense to stop. However, there are many other goals to be addressed, and as with catalog circulation, one must be careful to avoid the death-spiral of collapsing marketing budgets. Whether to view the program in aggregate or by increments is an important consideration, and the right answer depends not only on your firm’s tolerances, but on the shape of this curve. How smoothly does the efficiency degrade? For some of our clients we’ve found the efficiency curve to increase steadily to a point then shoot upwards. The shape of the curve depends on your vertical, the competitive landscape at the time, and other factors. Determining the shape of the curve is not trivial. Experimenting with different efficiency targets to assess the ROI of the last increment and the next increment is the best approach. If you’re currently aiming at 30%, try 25%, and 35%. Recognize that the lag between clicks and orders can make any pull back in bidding look profitable, and any increase look inefficient; you’ll need to study the effect of the change on “same session” sales, or let the test periods run long enough to wash out the latency. Remember also that the tracked value is not the whole picture. If search is responsible for a big chunk of your company’s web sales keep an eye on overall ratio of marketing expense to sales to make sure any pull back isn’t costing you more top line than you think. As we study our businesses to try to wring the last inefficiencies out don’t forget to look for efficiencies in places that already appear efficient on the surface. How much can you afford to spend on marketing? This simple little question hides some vexing issues that are worth exploring during rocky economic times.
Join the Discussion