Media Mix Modeling vs. ANCOVA

An Analytical Debate
What is the best way to measure incremental sales, or “lift”, generated from marketing investment dollars?
Where possible to implement, an experimental design that uses a randomly selected holdout group provides the most statistical power and reliability in marketing measurement.
• Holdout sample should be selected from the lowest level of the experimental design and each treatment cell should have a corresponding randomly selected holdout group.

Segment 1 Targets
N=150,600

Segment 2 Targets
N=350,200

Segment 3 Targets
N=102,000

TREATMENT GROUP (TEST) RANDOM CONTROL
TREATMENT GROUP (TEST) RANDOM CONTROL
TREATMENT GROUP (TEST) RANDOM CONTROL

NOTE: Control group can be much smaller than treatment group. Use sample size calculator to determine minimum possible sample size for control group.

Sample Size Calculator

SS = \frac{Z^2 \times (p) \times (1-p)}{C^2}

Where:

Z = Z value (e.g. 1.96 for 95% confidence level)
p = percentage picking a choice, expressed as decimal (.5 used for sample size needed)
c = confidence interval, expressed as decimal (e.g., .04 = ±4)

Option to apply finite population correction adjustment
Verify Pre-Campaign Holdout Validity

- Random selection of the control group from the target group should guarantee that the test and control groups are equivalent on key metrics prior to the campaign start, but...
- Statistical testing of the difference between pre-period test and control groups on key metrics is an important validation step and adds to confidence in the post-period measurement.

P-Values for the Difference Between Test and Control Group

Mean Values on Key Metrics in Pre-Period

<table>
<thead>
<tr>
<th>Sample Metrics</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Sales$</td>
<td>.45</td>
<td>.52</td>
<td>.35</td>
</tr>
<tr>
<td>Media Impressions</td>
<td>.82</td>
<td>.84</td>
<td>.61</td>
</tr>
<tr>
<td>Other Promotional Spend</td>
<td>.25</td>
<td>.38</td>
<td>.27</td>
</tr>
<tr>
<td>Competitor Spend</td>
<td>.31</td>
<td>.45</td>
<td>.24</td>
</tr>
<tr>
<td>Demographics</td>
<td>.28</td>
<td>.19</td>
<td>.24</td>
</tr>
</tbody>
</table>

\[p > .15 \text{ is non-significant} \]
Measure Pre-Post Launch Change

• If the test group and control group are statistically equivalent prior to the campaign launch, then the difference in sales between the groups after the campaign represents the incremental sales contribution of the campaign.

• ANCOVA (Analysis of Covariance) test will measure the significance of the difference and also control for other potential factors that could differentially impact test and control groups during the campaign period.

ANCOVA Adjusted difference is after controlling for covariates and, if significant (p-value less than .15), is the measure of true incremental sales from the campaign.
Summary: ANCOVA for Marketing Measurement

Benefits

• Extremely reliable results
• Conservative test
• Control for other factors that may impact volume growth of target relative to holdout
• Able to scale to calculate overall ROI from marketing program
• Expect replicable results if same conditions and weights apply in repeated treatment
There is another option...

Media Mix Modeling can overcome many limitations of ANCOVA-based analysis
Limitations of ANCOVA

• Feasibility of holdout group
• Opportunity cost of being out of market with incremental media
• Selection of test period length is subjective
• Difficult to measure mass & digital media
• No guidance on cross-tactic decisions
• Does not provide insight into future budget allocation decisions
• Does not explain “base” factor contributions

As we will see, Media Mix Modeling will overcome all of these limitations...
How is Media Mix Modeling Different?

Media Mix Models can be used to understand the *incremental*, layered effect of *cross-tactic* marketing *over time*...
What are the Requirements and Process?

Input Data

Statistical Models

Response Curves & Optimization

\[y_t = \alpha + \sum_{i=1}^{p} \beta_i x_{it} + \varepsilon_t \]

Sales Decomposition

TV

Direct Mail

Radio

Print

Base

Revenue

Time

Investment Amount

Incremental Revenue

% Revenue

TV

Direct Mail

Radio

Print

Base

Segment 1

Segment 2

TV

Direct Mail

Radio

Print

Base

Input Data

Statistical Models

Response Curves & Optimization

© 2012 Merkle Inc. All Rights Reserved | Confidential
How Does Media Mix Modeling Work?

Functional forms of model equations...

\[y_t = \alpha_0 + \sum_{l=1}^{L} \beta_l X_{lt} \]

\[y = \alpha_0 + \beta_1 x_1 + \beta_2 x_1^2 \]

\[y = \alpha_0 + \beta_1 x_1^p \]

\[y = \alpha_0 + x_1^\beta_1 + ... + x_L^\beta_k \]

\[y = \alpha_0 x_1^\beta_1 x_2^\beta_2 ... x_L^\beta_k \]

\[y = \exp(\alpha_0 - \frac{\beta_1}{x_1}) \]

Estimation of equations...

\[\hat{\alpha}_0 = \bar{y}_i + \hat{\beta}_1 \bar{x}_i \]

\[\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \]

\[\hat{u}_i = y_i - \hat{y}_i = y_i - \hat{\alpha}_0 - \hat{\beta}_1 x_i \]

\[\sum_{i=1}^{n} \hat{u}_i^2 = \sum_{i=1}^{n} (y_i - \hat{\alpha}_0 - \hat{\beta}_1 x_i)^2 \]
Functional Forms of Equations

- Functional form of a relationship between response and explanatory variables is determined by factors such as diminishing/increasing returns to scale, (a)symmetry in response, etc.
- Some of the most frequently used functional forms are:

<table>
<thead>
<tr>
<th>Functional Form</th>
<th>Representation</th>
<th>Return to Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>$y_t = \alpha_0 + \sum_{l=1}^{L} \beta_l X_{lt}$</td>
<td>Constant</td>
</tr>
<tr>
<td>Quadratic</td>
<td>$y = \alpha_0 + \beta_1 x_1 + \beta_2 x_1^2$</td>
<td>Diminishing</td>
</tr>
<tr>
<td>Power additive</td>
<td>$y = \alpha_0 + \beta_1 x_1^\rho$</td>
<td>Diminishing</td>
</tr>
<tr>
<td>Multiplicative (log-log)</td>
<td>$y = \alpha_0 x_1^{\beta_1} x_2^{\beta_2} ... x_L^{\beta_k}$</td>
<td>Diminishing</td>
</tr>
<tr>
<td>Log-Reciprocal</td>
<td>$y = \exp(\alpha_0 - \frac{\beta_1}{x_1})$</td>
<td>S-Shaped</td>
</tr>
</tbody>
</table>
Estimation of Equations

- **Example equation**
 \[y_i = \alpha_0 + \beta_1 x_i + u_i \]

- **Estimation of the ‘betas’**
 \[\hat{\alpha}_0 = \bar{y} + \hat{\beta}_1 \bar{x} \]
 \[\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \]

- **Residual**
 \[\hat{u}_i = y_i - \hat{y}_i = y_i - \hat{\alpha}_0 - \hat{\beta}_1 x_i \]

- **Sum of Squared Residuals**
 \[\sum_{i=1}^{n} \hat{u}_i^2 = \sum_{i=1}^{n} (y_i - \hat{\alpha}_0 - \hat{\beta}_1 x_i)^2 \]

Population equation indicating relationship between \(x \) and \(y \); estimated using sample of data representing the population

Intercept equals the sample average of \(y \) plus the sample estimate of \(x \)

Sample covariance between \(x \) and \(y \) divided by the sample variance of \(x \)

Difference between actual and predicted, estimate of the unknown error in the population equation

Ordinary Least Squares estimates minimize the sum of squared residuals
Application of Parameter Estimates

- How do we calculate contribution for each variable in the model?
 - Multiply coefficient from model (“beta”) by weekly model inputs (impressions)
 - Sum weekly values to get total contribution attributable to each media

- Model Coefficient (“Beta”) for Display: 0.0000486431

<table>
<thead>
<tr>
<th>Week</th>
<th>Display Impressions</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/30/2009</td>
<td>1,972,606</td>
<td>96</td>
</tr>
<tr>
<td>6/6/2009</td>
<td>2,226,734</td>
<td>108</td>
</tr>
<tr>
<td>6/13/2009</td>
<td>2,483,358</td>
<td>121</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/7/2011</td>
<td>5,550,921</td>
<td>270</td>
</tr>
<tr>
<td>5/14/2011</td>
<td>7,016,425</td>
<td>341</td>
</tr>
<tr>
<td>5/21/2011</td>
<td>4,937,705</td>
<td>240</td>
</tr>
</tbody>
</table>

Sum contribution across weeks to get total incremental sales due to Display... **53,415**
Measurement of time-varying impacts

• “Adstock” refers to the effect of advertising extending several periods after the original exposure

• Estimate using Distributed Lag Model
 1. Estimate model with lagged effects for all media terms – coefficients represent % decay at each lag
 2. Smooth with estimation of gamma distribution to the lagged effect coefficients

\[TV_{t}^{Adstock} = TV_{t} + (TV_{t-1}^{Adstock} \times 0.00) \]

- Estimate using various exponential decays
Methodologies used in MMM Analyses

- Ordinary Least Squares (OLS)
- Mixed (Bayesian Shrinkage, Random Coefficients)
- Unobserved Components Models (UCM)
- Two Stage: UCM-Mixed
- Seemingly Unrelated Regression (SUR)
- Structural Equation Modeling (SEM)

Methodology Selection

Time Series Data
(i.e. National x Week)
- OLS
- UCM
- Mixed
- Two Stage: UCM-Mixed
- SUR
- SEM

Panel Data
(i.e. DMA x Week)
- Mixed
- Two Stage: UCM-Mixed

Hierarchical Relationships
Case Study Comparisons

What does each approach offer in these instances?
Case Study 1: Direct Campaign

- Typical multi-channel campaign to physicians with mix of tactics deployed in rapid succession across long timeframe
- Capitalizes on use of “universal control group” of non-marketed holdout
Case Study 1: ANCOVA APPROACH

1. Define multiple pre-post periods
2. Conduct holdout-validity tests for each pre-period and each set of test/control groups
3. Measure ANCOVA-Adjusted change in volume using double difference
Case Study 1: ANCOVA

ANCOVA could provide solid measurement of overall campaign impact for two different time periods while controlling for other factors

- Per physician increase could be scaled to measure total impact and calculate overall ROI

<table>
<thead>
<tr>
<th></th>
<th>Change in Per Physician Prescription Volume from Pre1 to Post 1</th>
<th>Change in Volume from Pre2 to Post2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>+1.4</td>
<td>+2.5</td>
</tr>
<tr>
<td>Control</td>
<td>+0.4</td>
<td>-0.2</td>
</tr>
<tr>
<td>Difference</td>
<td>1.0</td>
<td>2.7</td>
</tr>
<tr>
<td>ANCOVA-Adjusted</td>
<td>0.8</td>
<td>2.2</td>
</tr>
<tr>
<td>Significance</td>
<td>.05</td>
<td>$p < .001$</td>
</tr>
</tbody>
</table>

- **Ancova 1: Time Period 1**
- **Ancova 2: Time Period 2**
Case Study 1: Mixed Modeling Approach

1. Use correlogram approach fitted with gamma curves to calculate decay curves per channel
2. Transform input variables to account for decay
3. Build model at the physician-week level over 130 weeks of history and all physicians, whether targeted or not in campaign
4. Fit model using best functional form
5. Calculate response curves for each tactic
6. Input into planning tool for optimization
Case Study 1: Campaign Planning From MMO Output

- MMO equation creates outputs that can be used in a scenario planning tool to test the impact of different investment levels by tactic and calculate expected ROI from varying budget levels.

... and ANCOVA confirmed lift estimates.
Case Study 2: Web Support Program

- Situation: Launched consumer support website where consumers register online for product support and information. Consumers only provide zip code in online support registration. Sales not able to be tied directly to consumers but only to geography (zip code)
- Key question: Does consumer support program drive future sales?

ANCOVA Approach:
1) Match consumer registered zip code to most likely purchase zip code
2) Identify control zip codes with no consumer registrations in proximity
3) Test “lift” after web program launches
Case Study 2: Possible ANCOVA Output

ANCOVA may demonstrate a link between sales and web support program use

- Test pre-post period differences between zip codes with registrations and with no registrations
- Control for covariates that might influence test zip codes

![Marketing GRP per month per household by zip - Pre and Post](chart1)

![Market share post program](chart2)

![Volume per household per month post program](chart3)
Case Study 2: Mixed Model Approach

1. Collect zip-level data on all programs in place, by week, over long time period
2. Calculate contribution of each of the tactics, including the web registrations
3. Compare relative contribution to sales and relative ROI levels of each tactic

Model Output: Quadratic Form

<table>
<thead>
<tr>
<th>Effect</th>
<th>Estimate</th>
<th>StdErr</th>
<th>tValue</th>
<th>Probt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.126</td>
<td>0.009</td>
<td>13.433</td>
<td>0.000</td>
</tr>
<tr>
<td>log_trend</td>
<td>0.025</td>
<td>0.004</td>
<td>6.719</td>
<td>0.000</td>
</tr>
<tr>
<td>total_mkt_grp</td>
<td>0.411</td>
<td>0.012</td>
<td>35.333</td>
<td>0.000</td>
</tr>
<tr>
<td>sq_total_mkt_grp</td>
<td>(0.139)</td>
<td>0.005</td>
<td>-27.309</td>
<td>0.000</td>
</tr>
<tr>
<td>decay_register</td>
<td>5.037</td>
<td>0.755</td>
<td>6.672</td>
<td>0.000</td>
</tr>
<tr>
<td>sq_decay_register</td>
<td>(8.051)</td>
<td>2.934</td>
<td>-2.744</td>
<td>0.006</td>
</tr>
<tr>
<td>decay_activation1</td>
<td>7.056</td>
<td>0.550</td>
<td>12.820</td>
<td>0.000</td>
</tr>
<tr>
<td>sq_decay_activation1</td>
<td>(4.106)</td>
<td>1.586</td>
<td>-2.589</td>
<td>0.010</td>
</tr>
<tr>
<td>decay_activation2</td>
<td>0.603</td>
<td>0.077</td>
<td>7.823</td>
<td>0.000</td>
</tr>
<tr>
<td>sq_decay_activation2</td>
<td>0.052</td>
<td>0.040</td>
<td>1.297</td>
<td>0.194</td>
</tr>
</tbody>
</table>

Input	Model	ROI
Baseline | 52% |
TV GRP | 25% | 2:1
Registrations | 3% | 4:1
Activation 1 | 6% | 3:1
Activation 2 | 7% | 6:1
Promotion 1 | 7% | 1:1
Case Study 3: Cross-Tactic Measurement

Situation: Large advertising spend – objective is to optimize spend by tactic and geography

Media mix modeling indicates incrementality of media along with indication of ROI across tactics...
Case Study 3: MMM provides insights into promotional performance by region

Media mix modeling indicates promotional messaging is more effective in the Midwest than all other regions...
A Best Practice Approach

.. Taking marketing measurement to the next level
<table>
<thead>
<tr>
<th>✓ = Winner on this Attribute</th>
<th>ANCOVA</th>
<th>Media Mix Modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>✓</td>
<td>(Depends on # groups)</td>
</tr>
<tr>
<td>Hidden Costs</td>
<td>Cost of withholding promotion from control</td>
<td>✓</td>
</tr>
<tr>
<td>Complexity of Execution</td>
<td>Statistics simpler, but test design more complex</td>
<td>✓</td>
</tr>
<tr>
<td>Data Requirements</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Measurement Ability</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Scenario Planning</td>
<td>Only to repeat exact</td>
<td>✓</td>
</tr>
<tr>
<td>Best for...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Best Practice Measurement Framework

Media Mix Modeling gives best practice estimates of media impacts – both overall and at the vehicle level. The methodology is also extensible to the tactic level, and can be applied in cases where indirect or direct attribution is not feasible. Indirect/Direct Attribution is best employed in relative analyses within a media vehicle, at levels of granularity not possible via traditional mix modeling (i.e. search keywords).

Legend:

Measure using Media Mix Modeling

Measure using Indirect/Direct Attribution
- Last-click
- In-market testing (ANCOVA)
- Ad tracking